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Abstract

Over the last six months we have tried to characterize the performance
of athenaMP[1], the multiprocess version of athena, the ATLAS software
framework, when running event reconstruction. Past athenaMP perfor-
mance studies were performed on multicore platforms with low (2-4) core
count. The initial focus of this work has been to extend these studies to
transitional manycore platforms with higher (32) core count. Encouraged
by the good scalability shown in these studies we are now investigating the
causes of the departure from ideal scalability (~50% running on 32 cores).
At the same time we have started detailed studies of ATLAS reconstruc-
tion on the Intel Nehalem platform which should be most common choice
for the next round of hardware procurements.

1 Program of Work

In the June 2009 USLHC supplemental funding request we proposed the follow-
ing deliverables for ATLAS (and CMS) developers:

1. ATLAS will use and maintain athenaMT /athenaMP and will concentrate
on athenaMP possibly improving athenaMP’s I/O buffer memory sharing.

2. While the new CMS event task farm is developed, we will start by bench-
marking athenaMP, the multi-process version of the ATLAS athena frame-
work which also implements an event task farm. LBNL NERSC is offering
us access to 16-core and, later, 32-core Intel processors for our tests as
well as support in setting up, running, and analyzing the results of IPM,
NERSC parallel performance monitoring tool. ATLAS will also explore
parallelization strategies that would allow to partition the data and or
the work needed to reconstruct an event among multiple processing units
(for example segmenting a detector in regions of interest, or pipelining the
reconstruction tasks through a chain of multiple processing units.



3. Performance evaluations on N-core systems investigating application event
throughput scaling, measuring the deviations from the ideal where event
throughput per application instance remains constant as more processing
units are added. The measurement will include cost factors for CPU,
memory, and I/O.

4. Analysis of bottle necks at the point of non-ideal scaling, including sugges-
tions for strategies to address them. The biggest challenge of this task will
be to find (hopefully not develop) tools to measure memory bandwidth
and to study how memory is shared between processing units.

5. Initiate investigations of ”decorated algorithms” !, selected based on pro-
file results, decorate and measure the performance difference.

Over the course of these six months we have concentrated our efforts on the
first three deliverables, and we have just started looking into the fourth.

2 athenaMP

athenaMP is an event-parallel version of athena, that runs serially through the
reconstruction program configuration and initialization and then uses Unix fork
to create a task farm of event workers. Thanks to Linux Copy On Write memory
optimization each event worker process shares a large fraction (see Fig. 5) of
its memory with the other workers and the mother process. At the end of the
event loop, the mother process wait for all forked event worked to join back and
then merges their output files.

The greatest advantage of athenaMP is that it offers a non-intrusive ap-
proach to parallelization. Each event worker runs isolated in its own address
space. Aside from requesting the application to advertise which files are used
for I/0O, the physics code that runs serially is more or less guaranteed to run as
is in athenaMP. Contrast this with the difficulties (described in [1]) experienced
with ATLAS High-Level Trigger attempts to run athena event workers in mul-
tiple threads, and it should be apparent why athenaMP multi-process approach
is the natural choice for ATLAS reconstruction on multi-core platforms.

3 Performance Measurements

3.1 Methodology

We run both full reconstruction, and fast reconstruction (a lightweight job pro-
cessing only Inner Detector data) on a number of current and next generation
hardware platforms. Unless otherwise specified the results in this note refer to
full reconstruction and do not differ significantly between full and fast recon-
struction.

Lin the proposal we defined decorated algorithm as enhancements to existing loops and
structures to add fine-grained parallelism using modern programming techniques



Table 1: Comparison of Computers

Name | CPU Cache Arch | Technologies Number | Total Total
of CPUs | Number | Mem
of Cores
Turing | AMD L1: 128 KB per Core | P2P HyperTransport | 8 32 256 GB
Opteron| L2: 512 KB per Core
8384 L3: 6 MB per CPU
Coors Intel L1: 32 KB Data 4 | P2P HyperThreading,| 2 8 24 GB
Xeon 32 KB Inst. per Core QuickPath,
X5550 | L2: 256 KB per Core TurboBoost
L3: 8 MB per CPU
VoAtlas| Intel L1: 32 KB Data + | Bus 2 8 16 GB
Xeon 32 KB Inst. per Core
E5410 L2: 8MB per CPU

To improve the reliability of our results we have captured our entire mea-
surement procedure in a python script that, for a given configuration, runs a
series of jobs with increasing multiplicity, collects the results, and produces a set
of standard performance histograms providing basic measurements like event
throughput or memory usage per process, as well as more sophisticated ones
characterizing the amount and relative weight of I/O operations, or memory
access. We are working toward integrating our script into the nightly ATLAS
run-time testing framework [2] to achieve continuous performance monitoring
in a production environment.

3.2 Hardware Used for Testing

Three test computers with 64-bit architecture are selected for our purposes?.

The selection aimed to test the impact of different system architecture, CPU/memory

access models on the performance of parallel ATLAS jobs.

A comparison of the test computers is listed in Table.1. The VoATLAS com-
puter has two Quad-Core Intel Xeon E5410 and is based on the Bus architecture.
As shown in Fig.1 (a), each CPU is connected to the Memory Controller Hub
(MCH) via a separate Front Side Bus (FSB), and the memory is attached to
the MCH. In this architecture all memory access operations issued by the CPUs
are processed by the MCH, so logically all CPUs have the same “distance” to
any memory module. The MCH need to communicate with all CPUs via FSBs,
the memory modules, and the PCI devices. This means the scalability of this
architecture is limited due to speed limitations like the communication protocol
and physical limitations like number of pins. It is unlikely the Bus architecture
will support more than 8 modern physical CPUs.

The shared bus protocol, since it is shared by multiple devices, requires that a

2The Operating Systems are 64-bit Linux 2.6 (Scientific Linux 5 on Turing and VoAtlas
and Ubuntu 9 on Coors), and ATLAS software is running in 32-bit compatibility mode.
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Figure 1: (a). Block diagram for the Intel Front Side Bus based architecture
[5]; (b). Block diagram for the Intel QuickPath Architecture [4]

device on the bus must first arbitrate for control before sending a request. The
Point-to-Point (P2P) architecture, on the contrary, mandates that there are
only two devices, so request can be sent without any preliminary handshaking,
hence greatly increase the communication bandwidth. AMD implemented this
technology under the name “HyperTransport”.

One example is the AMD Opteron 8384 Processor (codename “Shanghai”)
shown in Fig.2 (a). The quad-core processor includes 4 HyperTransport ports
that can be connected to other processors or devices via the P2P protocol. It
also includes a memory interface that will connect to memory modules.

National Energy Research Scientific Computing Center (NERSC) at Lawrence
Berkeley National Laboratory (LBNL) provides us a SUN SunFire X4600 server
(named “Turing”) which is based on this architecture. Fig.3 shows the block-
level diagram of the modules. Each quad-core processor is attached with 32 GB
of DDR3 memory, this eliminates the need of a central Memory Control unit.
All processors are inter-connected via HyperTransport, so that each processor
is at most 3 steps away from any other processor (e.g. the distance between
CPUO and CPU2 is 1, the distance between CPUO and CPU7 is 3, CPUO-
CPU2-CPUT7). Since memory modules are distributed over multiple processors
(the so called non-uniform memory architecture, NUMA), accessing memory lo-
cated in other processors will be consume much more time than accessing local
memory. Coordinating the process/threads with their memory access patterns
is very important for the overall performance of the applications. Combined
with tools like affinity we can efficiently study the effect of these patterns on
the performance of ATLAS jobs.

Intel implements similar P2P technology under the name “QuickPath Inter-
connect” (QPI)[6]. The computing science division at LBNL provides us a test
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Figure 2: (a) Die shot and function description for AMD Opteron 8384 Processor
(codename “Shanghai””);(b) Die shot and function description for Intel Xeon
X5550 (codename “Nehalem”)
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computer (named “Coors”) based on this architecture. It consists of two quad-
core Xeon X5550 processors (codename “Nehalem”, see Fig.2(b)). As shown
in Fig.1(b), each processor is attached with 12 GB of memory, and the two
processors are connected with QPI. Difference from AMD Shanghai, the Intel
Nehalem includes the HyperThreading technology and the TurboBoost technol-
ogy. Hyper-threading is used to improve the performance of parallelized jobs
by presenting two virtual cores to the operating system for each physical core.
This allows the operating system to schedule two threads/processes simulta-
neously to the same physical core. A hyper-threading equipped processor can
efficiently share the execution pipeline of each core among its two hardware
threads, hence increase the performance when running software with significant
memory access latencies. The TurboBoost technology, on the other hand, allows
CPU performance to be increased on demand by adjusting the clock frequency
dynamically.

3.3 Tools

An important part of this project has been understanding how to measure the
performance of athenaMP as it scales to more and more cores. It is essential
to understand the details of athenaMP performance so that performance bot-
tlenecks can be identified and removed. This has involved investigating, and
using a wide variety of tools to measure a broad array of system and applica-
tion parameters. Unfortunately, understanding performance measurements on
modern multi-core systems is a difficult challenge. We have worked closely with
several of the experts in this field at NERSC to help understand the data we
have collected for athenaMP.

One useful tool for measuring performance is the linux sar command. The
sar command can produce a wide variety of system activity reports based on
the data collected by the system activity data collector (sadc) process. With
sar we were able to measure the number of reads and writes from the physical
disks, as well as the amount of data read. The sar command was also useful
reporting the total system load and memory usage. We used another standard
linux tool, vmstat, for examining the virtual memory system in more detail.
The vmstat command gives information on the amount of virtual memory used,
the amount of free memory, and the system paging activity. This information,
when combined with the information available from the linux top command,
allowed us to understand the large-scale memory behavior of athenaMP.

While the standard linux system tools provided a great deal of information,
most of it was at the system level, and not the application level. To address
this shortcoming, and try to correlate the application level behavior we were
seeing with the system level statistics, we used the NERSC Integrated Perfor-
mance Monitoring (IPM) tool. IPM was originally designed as a performance
monitoring tool for parallel MPI applications. We worked closely with the IPM
developers to help extend IPM to work with forked serial jobs such as athenaMP.
IPM works by using the LD_PRELOAD mechanisms to interpose itself between the
application and the standard system calls. In this way IPM can collect detailed



information about the performance of the application. By correlating the IPM
data with the system level data collected, we were able to begin to understand
the behavior of athenaMP on multi-core.

With the understanding gained in our testing, we were able to focus on
memory performance as a likely scaling bottleneck for athenaMP. Thus we have
begun to examine how to measure memory usage and performance on NUMA
architectures like that of the Intel Nehelam chips that are becoming widely
prevalent. Modern linux kernels, if compiled correctly, provide a great deal of
information about NUMA statistics. For each process, the /proc filesystem will
contain a numa maps file that contains information on what memory pages are
located local to the process and which are located remotely. To obtain a more
dynamic view of the same data, we use the numastat command. This command
allows us to see the location of memory allocations as athenaMP makes them.
Our initial tests indicate, as we expected, that the default NUMA policies in
the linux kernel are not suitable for HPC applications like athenaMP. By de-
fault, the kernel does not always allocate memory close to the running process.
Instead, a round-robin algorithm is used to distribute memory allocations over
all of the memory locations. For most general-purpose applications, this is quite
useful because it prevents a single process from using all of the memory in one
location, thus starving another process that might run on the same core. For
HPC applications, this policy may hinder performance. To address this, we are
exploring the ability to set processor affinity to bind a process to a specific core,
and using the numactl command to set NUMA policy for a process. With nu-
mact]l we can force the linux kernel to allocate memory on the locations closest
to the running process.

To confirm our hypothesis about NUMA performance, we would like to be
able to measure the actual usage and bandwidth of the Nehalem QuickPath
Interconnect. To do this, we are examining the usage of PAPI counters. PAPI
provides an API to access the underlying hardware counters on the chip. Un-
fortunately, understanding the information returned is difficult. The counters
give you numbers for accesses across the QuickPath Interconnect, but they in-
clude all system accesses. Working closely with researchers at NERSC, we are
investigating exactly how these numbers are generated. For example, does a
dirty cache line generate a message to all memory locations? It is still an open
question as to whether PAPI will provide the information we need on detailed
hardware memory accesses, or we will need to find other ways of measuring this.

3.4 Early Results

The main advantage of an event-parallel approach a la athenaMP compared
to the job-parallel approach currently used in production, is that athenaMP
event workers share a hopefully large amount of memory. Sharing memory
between workers will allow either to reduce the amount of memory required for
a “standard” ATLAS production node, or, alternatively, to increase the memory
footprint of the reconstruction software we run in production.

Comparing the amount of real memory(Fig. 4) used by a serial job and by



athenaMP jobs one sees that indeed the memory footprint of an event worker
is about 50% smaller than that of a serial job.
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Figure 4: The amount of free memory in a node as a function of time. We
consider the sudden increase in free memory observed at the end of a job as the
amount of real memory used by the job

Having established that athenaMP brings a significant benefit in reducing the
memory footprint, we need to measure how well athenaMP scales with the num-
ber of event workers running, in other words what is the cost in terms of CPU
efficiency associated with athenaMP. As can be seen from Fig 6 athenaMP scales
reasonably well up to 32 event workers on the AMD box (turing.nersc.gov), with
a predictable slow degradation of performance of about 25% in the 2-32 work-
ers range. What is more surprising is the immediate ~25% drop in efficiency
observed in the case of the Nehalem box (coors.lbl.gov).

We have investigated three possible sources for the departures from perfect
scalability: conflicts in I/O access; suboptimal scheduling from the kernel, lead-
ing excessive context switches; and the related issues of non-uniform memory
access (NUMA) and locality of memory page accesses.

We quickly convinced ourselves that I/O is not a factor for the reconstruction
jobs we run. Both sar and IPM agree that the time spent in I/O is below 2%.
Also, thanks to the large amount of RAM available on turing and tesla, we
were able to run our jobs putting both input and output files in memory (using
dev/shm), and at the other extreme on a network mounted disk and observed no
significant difference in wall-clock time in the two cases. This was probably to be
expected since the total I/O bandwidth required by an athena reconstruction job
is less then 0.5MB/s. In the future we want to test how athenaMP performs in



L

4l vMem

- A
O 00N
N EEARERREEE

-
N

—— Mem_per_proc

Memory Consumption, Gb
= ®

o
o

@ single_proc

o
IS

o o :
[ o
RNRARARRRARERERRRRRREN RRRY

P N I RN EFRTEEN R AR AR AV BT
2 4 6 8 10 12 14 16 18
Nbr of Processes

co

Figure 5: The amount of real memory used per event worker, as a function
of the number of event workers. The first data point (blue circle, 0 processes)
refers to a serial job.

@ Coors_HT_on

Evts/min
o

Turing

»
»
>

A Voatlas91

8 101214 16 18 20 22 24 26 28 30 32
Nbr of Processes

°_|\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\

N
B
ol

Figure 6: Events processed per minute of wall-clock time, per event worker, as a
function of the number of event workers on voatlas91.cern.ch, coors.lbl.gov, and

turing.nersc.gov. For a perfectly scalable application the event rate per worker
should be flat.



analysis jobs, which use more than one order of magnitude extra I/O bandwidth.

Watching with top an athenaMP application running one sees clearly that
the event workers keep moving from one core to another every few seconds.
Naively this looks like an inefficient way to manage event workers which are
running at 100% CPU. Every time an event worker is moved to another core
the process will be stopped for hundreds (or thousands) of clock cycles and,
after the switch, all cache lines and memory pages which where local for the
process need to be transferred over to the new core. Recent linux kernels are
reported to be pretty sophisticated in deciding on which core a certain process
should run, as they attempt to match processes to locally accessible memory
pages. In any case to test the effect of process scheduling and migration on
athenaMP performance we used the linux taskset command, that allows to
specify on which processing unit (physical or virtual) a certain process should
run. Assigning processes to processing units in a well-balanced way?®, we were
able to get rid of the sudden 25% drop in efficiency observed on coors (Fig. 7).
What’s more, when setting process affinity, we observe,anedoctically at this
stage, that the event throughtput of multiple runs of the same job is more
consistent than the one of free “floating” processes.
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Figure 7: The effect of affinity on Nehalem (coors.lbl.gov), shown plotting the
event rate per worker as a function of the number of athenaMP processes for
balanced affinity settings and with “floating” processes scheduled by the kernel.

3we tried several balancing schemes and the results differs little for all reasonable schemes.
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3.5 Current Work

Having established the beneficial effect of controlling process placement using
affinity, we want to understand the residual ~25% drop in efficiency observed
when increasing the number of worker processes. As discussed in section 3.3
we are convinced that the limiting factor is the non-uniform access to memory.
We are currently investigating usage of Linux numactl command to control the
NUMA policy, and we are developing tools to analyze /proc/pid/numa maps
and the processor performance counters to obtain information about NUMA
performance.

Another promising feature of the Nehalem architecture is Intel Hyperthread-
ing support, the ability to address two virtual processing unit per physical core
and share the work among them. Earlier work at CERNI7] indicated that over-
committing a Nehalem processor by 50% (submitting 12 jobs on a 8-core CPU)
allowed to increase the processing rate by ~20%. These studies were done using
some generic benchmark, and we repeated them running ATLAS reconstruction
using both serial athena and athenaMP on coors.lbl.gov. The results for job-
parallellism are very encouraging(Fig. 8) and basically confirm CERN findings.
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Figure 8: Average number of events processed per minute of wall-clock time, as
a function of the number of event workers with Intel Hyperthreading support
on or off, when running N separate athena instances (job-parallel athena).

Running athenaMP on coors with Hyperthreading support, shows even bet-
ter performance improvements and scalability (Fig. 9). While this is a result that
needs to be understood better, it may have a simple explanation: the total real
memory footprint of an athenaMP job with 16 event processors is ~16GB, while
the total real memory footprint of the 16 separate jobs run by the job-parallel
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script is ~24GB, very close to the 24GB of RAM installed on coors.lbl.gov, the
Nehalem computer where these tests were run. While we are very pleased with
this result, we have also observed that when running fast reconstruction jobs?,
athenaMP does not seem to profit much at all from Hyperthreading and only
achieves ~85% of the event throughput of the job-parallel runs (Fig. 10).
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Figure 9: Average number of events processed per minute of wall-clock time, as
a function of the number of event workers with Intel Hyperthreading support on
or off, when running N event workers in athenaMP running full reconstruction.

4 Future Work

The main focus of our work for the remainder of FY10 will be to understand if
and how NUMA limits the peak performance of athenaMP, and why athenaMP
does not always seem to be able to benefit of Intel Hyperthreading support.
We are trying to setup a collaboration with NERSC, UC Berkeley Parlab, and
directly with Intel to characterize memory access performance in a reliable and
reasonably simple way. Based on our initial investigations and discussions with
experts at the aforementioned labs, we believe that tools to investigate memory
performance in NUMA architectures are still in nascent form, and that it will
need a significant amount of effort to define metrics that will allow ATLAS
developers to identify the code introducing memory bottlenecks.

Related to this work we need to understand the impact of linux kernel op-
timizations, such us different NUMA or scheduling policies, on athenaMP per-
formance.

4which have a memory footprint of ~500MB, about one third of a full reconstruction job
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Figure 10: Effect of Intel Hyperthreading on job-parallel athena (green) and
athenaMP (red) when running fast reconstruction. Compare to Figs. 8 and 9.

Given the disappointing event throughput of athenaMP running fast recon-
struction, we want to start measuring athenaMP performance for typical AOD
analysis jobs, which are even more lightweight than fast reconstruction, and
which potentially may run into I/O bottlenecks.

Finally we want to investigate some architectural changes that could improve
athenaMP scalability:

e an event server process, that by organizing disk reads in sequential reads
of large block could improve event input speed. This would also allow to
transform athenaMP in a sort of “event processing daemon” continuosly
processing events while they become available and removing to a large
extent the serial processing at job initialization and finalization, which for
lightweight analysis jobs can easily add up to 50% of the job

e simmetrically we want to try to replace the current merging of output files
at the end of the event loop with an event sink process®, which besides
centralizing and possibly speeding up disk writes, will make them asyn-
chronous, removing the barrier at the end of the job, thereby reducing the
total time to complete an athenaMP job.

e with an eye to massively many-core processors (128 cores and above) and
with the goal of improving locality of memory access, reducing NUMA

50r a ROOT native mechanism for parallel output
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problems, we want to start exploring techniques for sub-event paralleliza-
tion. One such technique that we believe helds particular promise is break-
ing up of the athena control flow in multiple execution sequences minimally
coupled in terms of data flow. We will then need a mechanism to efficiently
let data flow between different subprocesses. One such mechanism would
exploit athena Transient Data Store and the related Transient/Persistent
separation[8] to exchange data between processes either via sockets, or via
shared memory segments.
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